Mitochondrion, membrane-bound organelle found in the cytoplasm of almost all eukaryotic cells (cells with clearly defined nuclei), the primary function of which is to generate large quantities of energy in the form of adenosine triphosphate (ATP). Mitochondria are typically round to oval in shape and range in size from 0.5 to 10 μm. In addition to producing energy, mitochondria store calcium for cell signaling activities, generate heat, and mediate cell growth and death. The number of mitochondria per cell varies widely; for example, in humans, erythrocytes (red blood cells) do not contain any mitochondria, whereas liver cells and muscle cells may contain hundreds or even thousands. The only eukaryotic organism known to lack mitochondria is the oxymonad Monocercomonoides species. Mitochondria are unlike other cellular organelles in that they have two distinct membranes and a unique genome and reproduce by binary fission; these features indicate that mitochondria share an evolutionary past with prokaryotes (single-celled organisms).
The outer mitochondrial membrane is freely permeable to small molecules and contains special channels capable of transporting large molecules. In contrast, the inner membrane is far less permeable, allowing only very small molecules to cross into the gel-like matrix that makes up the organelle’s central mass. The matrix contains the deoxyribonucleic acid (DNA) of the mitochondrial genome and the enzymes of the tricarboxylic acid (TCA) cycle (also known as the citric acid cycle, or Krebs cycle), which metabolizes nutrients into by-products the mitochondrion can use for energy production. The processes that convert these by-products into energy occur primarily on the inner membrane, which is bent into folds known as cristae that house the protein components of the main energy-generating system of cells, the electron transport chain (ETC). The ETC uses a series of oxidation-reduction reactions to move electrons from one protein component to the next, ultimately producing free energy that is harnessed to drive the phosphorylation of ADP (adenosine diphosphate) to ATP. This process, known as chemiosmotic coupling of oxidative phosphorylation, powers nearly all cellular activities, including those that generate muscle movement and fuel brain functions.
source
Cell Biology / Cytology – Part 3 – Mitochondria – Structure and Function (Neet)

Thank you so much sir
I was missing your Classes very much.
It's really a great blessing to see you On you tube .
Now I can learn biology whenever I want from my favourite biology Teacher.
-manju
Plz sir upload more anf more videos
Nice video sir
Nice video sir
thq u sir
Nice video very helpful
Sir make more videos all cell organelles
Thanks sir ji bahut achha
Nice sir jii😄😄😄
Gazzab
वा सर पढ़कर मजा आ गया😄
Waaaao awesome presentation sir 😇😇…
Good teaching methods sir apse bhut kuch shikhne ko Mila 😊
Thanks very much sir
Sir aap please physics ki v video upload kijiye n